ASSIGNMENT 1

1. Three Electrong are placed at the corners of a equilateral triangle with sides length 1m, Find the net force on any one ELECTIOR DO TO THE OTHER TWO

Let us consider the triange to be postioned as so:
$\sqrt{1-0.5^{2}}=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}$

Direction is, by symmetry going to be be away from the corner. So for the point on the x axis, the force will be along the x axis.

$$
|F|=\frac{1}{4 \pi \epsilon_{0}} q_{e}\left(\frac{q_{e}}{1^{2}}+\frac{q_{e}}{1^{2}}\right)=\frac{q_{e}^{2}}{2 \pi \epsilon_{0}}=4.61 \times 10^{-28} N
$$

2. Find the work done of a charge of $q C$, By field $\mathbf{E}=(0, E)$ in moving IT Along the quarter circle from $(5,0)$ To $(0,5)$
```
\(x=5 \cos \theta, y=5 \sin \theta, \theta \in\left[0, \frac{\pi}{2}\right]\)
\(l(\theta)=(x, y)=(5 \cos \theta, 5 \sin \theta)\)
\(\frac{d l}{d \theta}=(-5 \sin \theta, 5 \cos \theta)\)
\(W_{A B}=-Q \int_{A}^{B} \mathbf{E} \cdot d \mathbf{l}=-q \int_{0}^{\frac{\pi}{2}}(0, E) \cdot(-5 \sin \theta, 5 \cos \theta) d \theta=-q \int_{0}^{\frac{\pi}{2}} 5 E \cos \theta d \theta\)
\(W=-5 E q \int_{0}^{\frac{\pi}{2}} \cos \theta d \theta=-5 q E[\sin \theta]_{0}^{\frac{\pi}{2}}=-5 q E \mathrm{~J}\)
```

3. Which of the following can not be the force created by an Electric field on a charge of 1 C located at ($\mathrm{x}, \mathrm{y}, \mathrm{Z}$)?

To be an electric field (force) must be conservitive.
ie at all points
$\exists f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \mathbf{F}=\nabla f$
iecurl $\mathbf{F}=\mathbf{0}$
3.1. $F=\left(x^{2}, y^{2}, z^{2}\right)$ Yes. curl $F=(0-0,0-0,0-0)=\mathbf{0}$

Thus conservitive thus it could be an electic field
3.2. $\mathbf{F}=\left(-y^{3}, x^{3}, 0\right)$ No. $\operatorname{curl} F=\left(0-0,0-0,3 x^{2}+3 y^{2}\right) \neq \mathbf{0}$

Not an electric field.
t
3.3. $\mathbf{F}=r \hat{\boldsymbol{\theta}}$ No. $F=\nabla f$

$$
\begin{aligned}
& \frac{\partial f}{\partial r}=0 \\
& \frac{\partial f}{\partial \theta}=r^{2} \\
& \frac{\partial f}{\partial z}=0
\end{aligned}
$$

no such function can exist.
$(\operatorname{curl} F)_{z}=\frac{1}{r}\left(\frac{\partial r F_{\theta}}{\partial r}-\frac{\partial F_{r}}{\partial \theta}\right)=\frac{1}{r}(2 r-0)=2 \neq 0$
Not a conservitive field
no a electrioc field
3.4. $\mathbf{F}=z \hat{\mathbf{r}}+r \hat{\mathbf{z}} \mathbf{y} \mathbf{e s}$.
3.4.1. $\frac{\partial F_{Z}}{\partial \theta}=r \frac{\partial F_{\theta}}{\partial z} . \quad 0=0$
3.4.2. $\frac{\partial F_{r}}{\partial z}=\frac{\partial F_{z}}{\partial r} . \quad 1=1$
3.4.3. Thus. Curl is zero, so is conservitive, so could be electric field
3.4.4. $\frac{\partial r F_{\theta}}{\partial r}=\frac{\partial F_{r}}{\partial \theta} . \quad 0=0$
3.4.5. Thus. Curl is zero, so is conservitive, so could be electric field
3.5. $F=r \cos \phi \hat{\boldsymbol{\theta}} \mathbf{N o .}$
3.5.1. $\frac{\partial \sin \theta F_{\phi}}{\partial \theta}=\frac{\partial F_{\theta}}{\partial \phi} .0 \neq-r \sin \phi$

So curl $F \neq 0$
thus not conservitive
so not electric field
3.6. $F=\frac{\hat{\mathbf{r}}}{r^{2}}+\frac{1}{r} \hat{\boldsymbol{\theta}}$ Yes.
3.6.1. $\frac{\partial \sin \theta F_{\phi}}{\partial \theta}=\frac{\partial F_{\theta}}{\partial \phi} . \quad 0=0$
3.6.2. $\frac{\partial F_{r}}{\partial \theta}=\sin \theta \frac{\partial r F_{\phi}}{\partial r} . \quad 0=0$
3.6.3. $\frac{\partial r F_{\theta}}{\partial r}=\frac{\partial F_{r}}{\partial \theta} . \quad 0=0$
3.6.4. Thus. Curl is zero, so is conservitive, so could be electric field
4. A charge of $-q C$ is placed in the center of a spherical, vacumn, caverty radius R, inside a perfect conductor. What is the charge INDUCED ON THE SURFACE OF THE CAVERTY?

This is a boundry condtion problem.
4.1. Electric Field Due to charge almost at boundry of vacum. by guaus

Let us create a gausian sphere of radius: $R-\Delta h$,
$\oiint E \cdot d A=$ flux $=\frac{Q_{\text {enclosed }}}{\epsilon_{0}}$
since perpendicular:
$\oiint E \cdot d A=E A=4 \pi(R-\Delta h)^{2} E$
$4 \pi(R-\Delta h)^{2} E=\frac{Q_{\text {enclosed }}}{\epsilon_{0}}$
$E=\frac{-q}{\epsilon_{0} 4 \pi(R-\Delta h)^{2}}$
4.1.1. Consider a surface inside the conductor. Let us conside a closed surface, with one side being parrell to the spherical cavert at $R+\Delta h$ distance from center.
4.1.2. Let use now consider a Gaussian surface, crossing the boundary, Lets make it a cut off spherical wedge. of height $2 \Delta h$
such that: the inner surface has area: $A_{i}=k 4 \pi(R-\Delta h)^{2}$
and the outer surface: $k 4 \pi(R+\Delta h)^{2}$
for some constant $k<1$
This surface will capture a portion of the charge induced on the inner surface of the conductor.
by symmetry it will capture $k Q_{\text {inducted }}$
There is a field: D_{i} though the inside edge,
since this boundry is shared with the sphere from 4.1, $D_{i}=\frac{-q}{\epsilon_{0} 4 \pi(R-\Delta h)^{2}}$
4.1.3. Apply Gauses law to spherical wedge. Guas' law: $\oiint D \cdot d A=\mathrm{flux}=\frac{Q_{\text {enclosed }}}{\epsilon_{0}}$ $\oiint D \cdot d A=D_{i} A_{i}+D_{o} A_{o}+D_{\text {tangentaial }} A_{\text {side }}$
with $A_{\text {side }} \propto \Delta h$ area of a cone slice
$\oiint D \cdot d A=D_{i} k 4 \pi(R-\Delta h)^{2}+D_{o} k 4 \pi(R+\Delta h)^{2}+D_{\text {tangentaial }} A_{\text {side }}$
consider $\Delta h \rightarrow 0$
$\oiint D \cdot d A=D_{i} A_{i}+D_{o} A_{o}+D_{\text {tangentaial }} A_{\text {side }}=k Q_{\text {inducted }}$
$D_{i} k 4 \pi R^{2}+D_{o} k 4 \pi(R)^{2}+0=k Q_{\text {induced }}$
$D_{i}+D_{o}=\frac{Q_{\text {induced }}}{4 \pi R^{2}}$
$\frac{-q}{\epsilon_{0} 4 \pi R^{2}}+D_{o}=\frac{Q_{\text {induced }}}{4 \pi R^{2}}$
$Q_{\text {induced }}=4 \pi R^{2} D_{o}-\frac{q}{\epsilon_{0}}$
Since D_{o} is the an electric field within a perfect conductor,
$D_{o}=0$
Thus
$Q_{\text {induced }}=-\frac{q}{\epsilon_{0}}$
5. Sphere Radius R with charge density $\rho C / m^{3}$, test charge $-q C$ with MASS m RELEASED FROM REST, AT ON ONE OF NARROW CHANNEL

Let $p(t)$ be the position of the partical at time t
$p(0)=(-R, 0,0)$
$p^{\prime}(0)=\mathbf{0}$
$p^{\prime \prime}(t)=\frac{F(p(t))}{m}$
More over, since by symmetry, the partical is constrained to the x axis, we can simplify to 1 dimentional cordinates.
$p(0)=-R$
$p^{\prime}(0)=0$
$p^{\prime \prime}(t)=\frac{F(p(t))}{m}$
We must find the values of the Electric Field, along the x axis $\left(\phi=0, \theta=\frac{\pi}{2}\right.$ axis)

5.1. Sphere Electric Field Values.

5.1.1. Use Gaus' Law inside. Gaus law: $\oiint E \cdot d A=$ flux $=\frac{Q_{\text {enclosed }}}{\epsilon_{0}}$

Lets consider, a point on the x Axis, that is on a gausian surface of radius T from center, $T \leq R$
$Q_{e n c}(T)=V \rho=\frac{4}{3} \pi T^{3} \rho$
By semetry we know that the field will be radial - perpendicular though the surface.

We also know, by syemtry that the field will be equal all all points on the surface.
So $\oiint_{T} E \cdot d A=E(T) A(T)=4 \pi T^{2} E(T)$
thus
$\oiint E \cdot d A=\frac{Q_{\text {enclosed }}}{\epsilon_{0}}$
$4 \pi T^{2} E(T)=\frac{\epsilon_{0}}{4 \pi T^{3} \rho} 3 \epsilon_{0}$
$E(T)=\frac{T \rho}{3 \epsilon_{0}}$
Notice that there is a point in the center: $E(0)=0$
5.1.2. Use Gauses law Outside. $Q_{\text {enc }}(R)=V \rho=\frac{4}{3} \pi R^{3} \rho$
$\oiint E \cdot d A=\frac{Q_{\text {enclosed }}}{\epsilon_{0}}$
$4 \pi T^{2} E(T)=\frac{4 \pi R^{3} \rho}{3 \epsilon_{0}}$
$E(T)=\frac{R^{3} \rho}{3 T^{2} \epsilon_{0}}$
5.2. Force. $F(T)=-q E(T)= \begin{cases}\frac{-q T \rho}{3 \epsilon_{0}} & T \leq R \\ \frac{-q R^{3} \rho}{3 T^{2} \epsilon_{0}} & T>R\end{cases}$

Note that q is of different charge to the sphere, so it will be attracted
5.3. Work out position. $p(0)=-R$
$p^{\prime}(0)=\mathbf{0}$
$p^{\prime \prime}(t)=\frac{F(p(t))}{m}= \begin{cases}\frac{-|p(t)| q \rho}{3 m \epsilon_{0}} & |p(t)| \leq R \\ \frac{-q R^{3} \rho}{3 m|p(t)|^{2} \epsilon_{0}} & |p(t)|>R\end{cases}$
5.3.1. Let us consider the case $-R \leq p(t) \leq 0$. $p^{\prime \prime}(t)=-\frac{q \rho}{3 m \epsilon_{0}} p(t)$

This a a 2ODE, solve it with Mathimatica.
$p(t)=-R \cos \left(t \sqrt{\frac{q \rho}{3 m \epsilon_{0}}}\right)$
So we are oscillating with constant amplitude.
Worryingly, we have perpetural motion,
however this may be a consiquence of ignoring friction.
check: $p(0)=-R \times 1$
5.3.2. Solve for other side: $0 \leq p(t) \leq R$. When will we reach the center?
$\cos \left(t \sqrt{\frac{q \rho}{3 m \epsilon_{0}}}\right)=0 \Longleftrightarrow t=\frac{\pi}{2 \sqrt{\frac{q \rho}{3 m \epsilon_{0}}}} \times k, k \in(2 \mathbb{Z}+1)$
Giving us inituial contdion: $p\left(\frac{\pi}{2 \sqrt{\frac{q \rho}{3 m \epsilon_{0}}}}\right)=0$
$p^{\prime}(t)=R \sqrt{\frac{q \rho}{3 m \epsilon_{0}}} \sin \left(t \sqrt{\frac{q \rho}{3 m \epsilon_{0}}}\right)$
$p^{\prime}\left(\frac{\pi}{2 \sqrt{\frac{q \rho}{3 m \epsilon_{0}}}}\right)=R \sqrt{\frac{q \rho}{3 m \epsilon_{0}}} \sin \left(\frac{\pi}{2}\right)=R \sqrt{\frac{q \rho}{3 m \epsilon_{0}}}$
$p^{\prime \prime}(t)=\frac{q \rho}{3 m \epsilon_{0}} p(t)$
Could continue to solve this with mathimatica, but this is getting convoluted, and error prone.
$\underline{\text { Assume that } p(t)=-R \cos \left(t \sqrt{\frac{q \rho}{3 m \varepsilon_{0}}}\right) \text { holds for whole domain }}$
5.3.3. For it to return to start position. $t \sqrt{\frac{q \rho}{3 m \epsilon_{0}}}=2 \pi k, k \in \mathbb{Z}$
$t=\frac{2 \pi k,}{\sqrt{\frac{q \rho}{3 m \epsilon_{0}}}} k \in \mathbb{Z}$
Final Positon. No final position as constant motion.

