Part I Revison lecture:

 \star Important idea's

1 Group:

a group is a set with an operation

 $(G,\ast).{\rm a}$ group has 3 conditons: (as well \ast must be a Binary op. (it may be stated in the question that is is)

- * is ascociative
- There is an identity element
- every element has an inverse

2 Subgroup

A subgroup is a subset of your group, that is also a group under the same operation

2.1 1st/2nd subgroup test

First for either, must show group is nonempty. (often best to show it contains the identity)

2.1.1 1st subgroup test

 $\forall a, b \in H \subseteq G$ shopw that $ab \in H$ and $a^{-1} \in H$

2.1.2 2nd subgroup test

 $\forall a,b \in H, ab^{-1} \in H$

3 Order of an element

The order of an element g is the minim number of time you must apply the operatution, to get he identity

ie the smallest positive integer n, such that $g^n = e$. if no such uinteger exist then ghas infinite order

3.0.3 Order of identity element:

is 1.

3.1 Order of powers of an elemnt

if |g| = n then $|g^k| = \frac{n}{gcd(n,k)}$

3.1.1 Order of element divides order of group

by collary of lagrange: if G is finite, and $g \in G$ then the order of g divideds |G|

3.1.2 Cauchy's theorem

if G is a finite group, and p is a prime dividing |G| then G contains a element of order p.

4 Cylic groups

A group G is cyclic if $G = \langle g \rangle$ for some $g \in G$

4.1 *Every sybgroup of a cylic groups is cylcic

4.2 If G is a cyclic group of ordr n, and r|n then G has a unique subgroup of order r

4.3 Isomorphic to \mathbb{Z}

Any infinite cyclic group is isomorphe to \mathbb{Z} any finite cyclic group of order n is isomorphic to \mathbb{Z}_n

5 Permuation groups

 S_n , $Sym(\Omega)$

5.1 Every permuations can be written as a product of transpostions

these don't have to be disjoint Eg (123) = (12)(13)

5.1.1 * That product of transpositions ie either always even or always odd.

Though there may be many way of writing it as product of transpositions

5.2 *****Ruffins theorum

The order os a a permuation when written as a product of disjoine cylces is the lcm of the cycle lengths

NOT EXAMINABLE: Futurama theorem 5.3

let A be a finite set and let x, y be an extra 2 elements.

then for any permutions σ of A,

we can multiply σ by a product of disjoint transpositions each containing one of x, or y or both.

5.3.1 Proof:

for one a once cylce permutaion of length k: (123...k)(xk)(y, k-1)(y, k-1)(y(2)...(y,1)(x,k-1)(y,k) = (x,y) and then (x,y)(x,y) = ()

if we had 2 cycles $(123...k_1)(abc...k_2)$

Cosets 6

 $H \leq G, g \in G$ $Hg = \{hg | h \in H\}$

- If G is finite them |H| = |Hg|
- cosets partition group
- $Ha = Hb \iff ab^{-1} \in H$

- if $a \in H$ then Ha = H

6.0.2Complete set of right coset repressitives for H is:

is a subset X of G, such that ever cos of H can be written as Hx for some $x \in X$

And for $x_1, x_2 \in X$: $Hx_1 \neq Hx_2$ for $x_1 \neq x_2$

6.1Normal subgroups

 $H \lhd G$ $\iff Ha = aH$ for all $a \in G$ $\iff a^{-1}Ha = H$ for all $a \in G$ $\iff a^{-1}Ha \subseteq H \ \forall a \in G \ (normal subgroup test)$

6.1.1 All subgorups of abeleian groups are normal.

Group actions 7

• orbits

- written for element α : α^G

• stabalisers

- written for element α : G_{α}

7.0.2 \star Orbit stabaliser theorem

 $\frac{\det G \leq Sym(\Omega) \text{ with } |G| \text{ finite. then}}{|G| = |\alpha^G| |G_{\alpha}| \text{ for } \alpha \in G}$

8 Homomorphism:

 $\phi: G \to H$ is a hm, if $(ab)\phi = (a)\phi(b)\phi \ \forall a, b \in G$

8.0.3 Kernal:

 $\ker \phi = \{g \in G | (g)\phi = e_H\}$ $\ker \phi \lhd G$

8.0.4 Onto

a homomorphism is onto one iff the kernal is trivial $(ker \phi = \{e_G\})$

8.1 Isomorphism:

a one to one and onto hm.

8.2 Automoporphism

an automorphism aof a group G is a isomprhism $\phi: G \to G$ group of all automorphisms of G is Aut(G)

8.2.1 inner auto

$$\begin{split} \iota_g &: \mathbf{G} {\rightarrow} \mathbf{G} \text{ is an autom} \\ x &\mapsto g^{-1} x g \\ & Inn(G) = \{ \iota_g | g \in G \} \lhd Aut(G) \end{split}$$

8.2.2 \star Conjuugation in S_n

two elements of ${\cal S}_n$ are conjugate iff they hyave the same cycle structure

8.2.3 Conjugate Subgroups

let H and K be subgroups of G, then H is conjuage to K if $\exists g \in GH = g^{-1}kg$

9 *Legrange' Thm

LEt G be a finite group, and $H \leq G$. Then |H| | |G| (order of H divides the order of |G|)

9.0.4 Converse not always true

Let G be a group of order n. let r|n. You cannot gare enter there is a subgour of order r

Your can if:

- G is cylic.
- or G is abelain (Fundermental theorem of finite abeleian groups)
- or if r is a prime power (Sylows therom)

10 *Fundermental theroenm of fintite abeleian groups

Let G be finite abelian group

then $G \cong \mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times ..\mathbb{Z}_{p_r^{a_r}}$ for some primes mp_i and positive integers ma_i moreover the cylcif factos $\mathbb{m}\mathbb{Z}_{p_i^{a_i}}$ are unique up to ordering.

11 *****Slows therm

let G be a group of order p^rm with pa rime, $r\in \mathbb{Z}_+ \text{and } gcd(p,m)=1$

- G has a subgroup of ordr p^r . Called a Sylow p-subgroup
- all sylow subgroups are conjugate.
- any p-subgoups of mG is containsed in a sylow p subgroup
- If n is the number of Sylow p-subgroups then $n \equiv (mod p)$ and $n \mid m$

11.1 if there is only one sylow p-subgroup is normal

a saylow p - subgroup is normal in Giff the unique Sylow, p - subgroup

11.2 Interctrion (of groups of coprime order) is trival

is $|P| = 5^2$, |Q| = 7 then $P \cap Q \leq G$, and $P \cap Q \leq G$, $P \cap Q \leq P$, $P \cap Q \leq Q$ thus $|P \cap Q \leq G| \mid |P$ and $|P \cap Q \leq G| \mid Q$ thus suince $gcd(|P|, |Q|) = 1 \mid P \cap Q \leq G| = 1$ so it just hte identity

12 Direct Product

external diret product: for H, K groups: $H \times K = \{(h, k) | h \in H, k \in K\}$

12.0.1 *Identifing something as the result of a direct product

let G be a group with normal subgroups N_1 , N_2 , and $N_1 \cap N_2 = e$ and $G = N_1 N_2 = \{n_1, n_2 | n_1 \in N_1, n_2 \in N_2\}$ then $G \cong N_1 \times N_2$

12.0.2 Groups of order p^2

are either \mathbb{Z}_{p^2} or $\mathbb{Z}_p \times \mathbb{Z}_p$

13 Quotient Groups

for G a group and $H \lhd G$ then G/H is the group of all right coset of H in G with the b. op:

(Ha)(Hb) = H(ab)

13.0.3 Corresponace theorem

 $\begin{array}{l} H \lhd G \;, \\ H \leq K \leq G \\ \text{then } K \cong G/H \end{array}$

13.1 * 1st isomorphis theorem

let $\phi: G \to H$ be a hm. then $G/\ker \phi \cong (G)\phi \leq H$

13.2 \star Cayleys therom

Every group is isomorphic to a subgroup of $Sym(\Omega)$ for some set Ω . As if G acts on Ω then $\exists hm \phi : G \to Sym(\Omega)$

14 *Orbit counting Lemma

15 Affine groups:

$$\begin{split} AGL(n,F) &= \{t_{A,v} | A \in GL(n,F)v \in F^n\} \\ t_{a,v} : F^n \to F^n : x \mapsto xA + v \\ \text{for any field} \end{split}$$