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Summary of PSO

Particle Swarm Optimisation is an optimisation technique inspired by
flocking birds to search a solution space for an optimal solution

Each particle considers its personal best location and the swarm’s
best location when adjusting its velocity

Technique is appropriate for problems that can be expressed as the
optimisation of multiple numerical parameters

Figure : Before and after shots of PSO at work
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PSO for Feature Selection
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Pattern Matching and Features

PSO has application as part of pattern matching and image
classification systems

Data and images can contain a number of ”features”: components
that can be used to distinguish classifications of the data

Basic image classification algorithms compare differences in the
features of images to determine how they are classified

PSO is useful in determining and weighting the set of features these
algorithms use
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Feature Weighting

Classification algorithms often want to weight features, putting
greater weight on features that are better at distinguishing between
data

This can be expressed as an optimisation problem:
Find the set of weightings for features 1..n that maximises the
accuracy of the classification algorithm

PSO can be rawly applied as particles in a n dimensional solution
space searching for weightings with a range dependent on the
implementation and using the accuracy of the classification algorithm
as fitness function
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The Feature Selection Problem

It is possible to find a huge number of unintuitive but potentially
useful features in data that could be distinguishing

But it is computationally expensive to look at all the features and
suboptimal features could result in loss of accuracy

We’d like to find a subset X of all features Y with high accuracy, but
is no larger than some limit d

This can be expressed as:

J(X ) = max
Z⊆Y ,|Z |≤d

J(Z )

Where J(·) is the accuracy of the classification problem
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Applicability of PSO

In the ballpark of PSO as a parameter based optimisation problem

If the solution is expressed as a sequence of parameters, it would
appear as a binary sequence with 0 representing that a feature is not
in the set and 1 representing

For instance
010110

Would represent the subset of features consisting of features 2, 4 and
5

Looks achievable with a swarm in solution space of dimension n
where n is the total number of features with the classifier accuracy
function J(·) being the fitness function

But the parameters are discrete binary values, not continuous values
in a space
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Discrete Binary PSO

PSO variation made by Eberhart and Kennedy (1997) for use in
discrete binary problem spaces

Instead of existing in a n-dimensional solution space, particles exist on
the vertices of a n-dimensional hypercube

Particle position is probabilistic. The velocity in a dimension is
effectively the probability of being at 1 in that dimension

So the velocity of a particle must be translated from a value in
(−∞,+∞) to a probability in (0, 1)
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Velocity to probability

To achieve what is needed, change the position function of PSO to:

x(t + 1) =

{
1 ifrand() < S(v(t))

0 otherwise

S(·) is the Logistic Function. A function that takes R→ (0, 1)

1

1 + e−x

Given this modification, the PSO algorithm finds an optimal solution
in the form of a set of binary parameters

Figure : The Logistic Curve

Ben Deeks & Lyndon White PSO Applications September 9, 2014 9 / 28



Solving the problem

Now we have a PSO algorithm that gives a binary set. Exactly what
is needed for the problem

Established that the PSO will have solution space dimension n, total
number of features

Can use the accuracy function as the fitness function, which will
optimise for the best possible set of features

Need to include a factor that punishes large feature sets into the
fitness function. An example fitness function could be:

f (X ) =

{
J(X ) if|X | ≤ d

0 otherwise
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PSO for Clustering
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Clustering

We have a N-dimensional space, containing data represented as points
with in it. We will call this space EN

To be able to apply a clustering algorithm to any dataset, we first need to
map that dataset into points in EN . This is a similar notion to the fact the
to optimize a problem using PSO we first need to express it as having
numerical parameters.

We would like to partition that data into clusters. On the notion that this
will give us meaningful groupings.
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Clustering Friends

We might for example like to cluster our friends and acquaintances.
We could convert them to points in E2 by assigning to each:

the date when we met

how many times we have spoken in the past 12 months.

We could expect a clustering algorithm to group all our high school friends
in one group, and all our colleges in another – even though it isn’t given
this information directly.

This is because it is a unsupervised learning algorithm.
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What makes a Good Clustering?

For data from the set X , into clusters S = {C1,C2, ...,Ck}
A good cluster is compact. This means it has low variance.

We can find the centroid of each cluster: µ(C ) =
1

|C |
∑
∀x̃∈C

x̃

So we can find it’s variance: σ2(C ) =
∑
∀x̃∈C

(x̃ − µ(C ))2

We would like to minimize the average variance of the clusters.

I so minimize: gfit(S) =
1

|S |
∑
∀C∈S

∑
∀x̃∈C

(x̃ − µ(C ))2
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K-Mean Algorithm

Finding the optimum clustering is NP-Hard. One of the most common
algorithms used to come close is K-Mean.

Begin with a list of Centroids (Z ). Then
Repeatedly:

1 Select clusters (S) of points closest
to those Centroids

2 Move of Centroids (Z ) to be at
center of their cluster

Figure : Source: http:

//shabal.in/visuals/kmeans/5.html
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A single step of the K-Mean Algorithm

function k-mean-step(Z , X )
S ← [] . S is a indexed set of clusters (sets)
for all x̃ ∈ X do . For each datum

z̃ ← argmin
z̃∈Z

√
(x̃ − z̃)2 . Find closest centroid

S[z̃ ].append(x̃) . Add it to cluster for that centroid
end for
Z ← {}
for all S ∈ S[ ] do . For each cluster

Z .append(
1

len(S)

( ∑
∀x̃∈S

x̃

)
) . Calculate new centroid

end for
return (S,Z ) . Return clusters and centroids

end function
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K-Mean Algorithm

Initialize Z then:
Repeatedly call

(S,Z )← k-mean-step(Z ,X )

Until:

Centroids don’t change position (much);

or: Cluster membership doesn’t change;

or: exceeds preset number of iterations

Figure - Right: K-Mean Iterative execution,
which stabilized after 3 generations
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K-Mean: Not Globally Optimum

Once the initial centroids (Z ) are set, it is deterministic

Depending on how initial centroids set get different clusterings of
same data

Not all of which will (necessarily) be equality optimal

In fact, K-Mean will often get stuck in local optima.

Figure : 3 different Clusterings of same data
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Can we express clustering in a PSO accessible form?

Our goal was find the global optimal clustering

expressed as minimizing

gfit(S = C1,C2, ...,Ck ) =
1

|S |
∑
∀C∈S

∑
∀x̃∈C

(x̃ − µ(C ))2

The the centroids can define the clusters, so a mapping exists
C : Z → S : z̃ 7→ Ci as was done in K-Mean.

we can re-express gfit as

gfit(Z = {z̃1, z̃2, ..., z̃k}) =
1

|Z |
∑
∀z̃∈Z

∑
∀x̃∈C(z)

(x̃ − z̃)2

This is a function, in terms of numerical parameters Z thus can apply
PSO.
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What is the fitness function again?

gfit(Z = {z̃1, z̃2, ..., z̃k}) =
1

|Z |

∑
∀z̃∈Z

∑
∀x̃∈C(z)

(x̃ − z̃)2

function g-fit(Z , X )
C ← cluster-up(Z ,X )

return
1

|Z |
∑
∀z̃∈Z

∑
∀x̃∈C[z̃]

(x̃ − z̃)2

end function

function cluster-up(Z , X ) . This may look familiar
C ← []
for all x̃ ∈ X do

z̃ ← argmin
z̃∈Z

√
(x̃ − z̃)2

C[z̃ ].append(x̃)
end for
return (C[ ])
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PSO for clustering

Each particle is not a centroid

Each particle is a full set of k centroids.

that is the particles are flying around the space: (EN)k

Figure : Position of centroids in E3 for a single particle (K = 3), from Ye and Chen(2005)

Chen and Ye (2004) applied the G-Best PSO algorithm to clustering
in this way.

They found it clustered marginally better than K-mean
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AKPSO
in 2005 Ye and Chen proposed what they called the Alternative K-Mean
PSO algorithm.
Repeat:

1 Evaluate fitness function at all particle points
I Finding the pbests and gbests

2 Apply a single step of K-Mean to the gbest only
I moving it to a roughly locally optimum position

3 Apply the PSO (GBest) movement function.
I using this new improved GBest

Figure : This worked well (Ye and Chen, 2005))
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PSO-KM: K-Mean as final tweaking

Improving upon Chen and Ye’s 2004 work,
I and apparently without awareness of their 2005 work,

Ahmadyfard and Modares (2008), proposed:

1 use PSO to train for clustering (as per Chen and Ye, 2004)
F This gave very good initial values close to (presumed) Global Optima.

2 Use full K-Mean to get fine tune the Gbest
F This is the same notion as applying a hill climber etc, as discussed in

the practical lecture.

This is playing each algorithm to its strengths
I PSO as a global search
I K-Mean as a local search
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K-PSO: starting with some Prior Knowledge

Tsia et. al. (2008), describes K-PSO as:

1 execute K-Mean to get set of centroids, use that result as 1 particle.

2 Initialise another 5N − 1 Particles randomly

3 Apply a PSO to clustering
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K-NM-PSO: Combined Optimising

K-PSO is used by Tsia et. al as stepping stone to the K-NM-PSO: The
K-Mean Nelder-Mead Particle Swarm Optimiser

Initialise 3N particles randomly.

initialise 1 more using K-Mean

Each iteration:
I Apply Nelder-Mead gradient decent to the best N particles
I Replace the N + 1th best particle with the result of previous step.
I Apply PSO velocity move to worst 2N Particles
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There are other variations

We have looked at 5 methods for clustering with PSO

PSO on its own

PSO with a K-Mean Step on GBest once each generation

PSO, followed by K-Mean fine tuning

K-mean first to get some prior knowledge, the PSO cluster

K-NM-PSO for cooperating a lot of optimisers

There are many others: Rana et. al 2008 lists 27 different papers on
variations of PSO for Clustering.
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End

Questions?
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