
JuliaLang: The Ingredients for a
Composable Programming
Language

Dr Lyndon White
Research Software Engineer
Invenia Labs

What do I mean by composable ?

Examples:
If you want to add tracking of measurement error to a scalar
number, you shouldn't have to say anything about how your
new type interacts with arrays (Measurements.jl)
If you have a Differential Equation solver, and a Neural
Network library, then you should just be able to have neural
ODEs (DiffEq.jl / Flux.jl)
If you have a package to add names to the dimensions of an
array, and one to put arays on the GPU, then you shouldn't
have to write code to have named arrays on the GPU
(NamedDims.jl / GPUArrays.jl)

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

1 of 18 25/01/2020, 08:03

Why Julia is it this way?
I am going to tell you some things that may sound counter-intuitive.

I am going suggest, that julia code is so reusable, are because the
language has not just good features, but weak and missing features.

Missing features like:

Weak conventions about namespace polution
Never got round to making it easy to use local modules,
outside of packages
A type system that can't be used to check correctness

But that these are countered by, or allow for other features:

Strong convention about talking to other people
Very easy to create packages
Duck-typing, and multiple dispatch, together.

Julia namespacing is used in a leaky way
Common advise when loading code form another module in most
languagage communities is: only import what you need.
e.g using Foo: a, b c

Common practice in Julia is to do: using Foo,
which imports everything everything that the author of Foo marked to
be exported.

You don't have to, but it's common.

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

2 of 18 25/01/2020, 08:03

But what happens if one has package:

Bar exporting predict(::BarModel, data),
and another Foo exporting predict(::FooModel, data)

and one does:
using Foo
using Bar
training_data, test_data = ...
mbar = BarModel(training_data)
mfoo = FooModel(training_data)
evaluate(predict(mbar), test_data)
evaluate(predict(mfoo), test_data)

If you have multiple usings trying to bring the same name into scope,
then julia throws an error. Since it can't work out which to use.

As a user you can tell it what to use.
evaluate(Bar.predict(mbar), test_data)
evaluate(Foo.predict(mfoo), test_data)

But the package authors can solve this:
There is no name collision if both names are overloaded the from the
same namespace.

If both Foo and Bar are overloading StatsBase.predict everything
works.
using StatsBase # exports predict
using Foo # overloads `StatsBase.predict(::FooModel)
using Bar # overloads `StatsBase.predict(::BarModel)
training_data, test_data = ...
mbar = BarModel(training_data)
mfoo = FooModel(training_data)
evaluate(predict(mbar), test_data)
evaluate(predict(mfoo), test_data)

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

3 of 18 25/01/2020, 08:03

This encourages people to work together
Name collisions makes package authors to come together and create
base package (like StatsBase) and agree on what the functions
mean.

They don't have to, since the user can still solve it, but it encourages it.
Thus you get package authors thinking about other packages that
might be used with theirs.

One can even overload functions from multiple namespaces if you
want;
e.g. all of MLJBase.predict, StatsBase.predict,
SkLearn.predict.
Which might all have slightly different interfaces targetting different use
cases.

Its easier to create a package than a local
module.
Many languages have one module per file, and you can load that
module e.g. via
import Filename

from your current directory.

You can make this work in Julia also, but it is surprisingly fiddly.

What is easy however, is to create and use a package.

What does making a local module generally give
you?

Namespacing
The feeling you are doing good software engineering
Easier to transition later to a package

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

4 of 18 25/01/2020, 08:03

What does making a Julia package give you?
All the above plus
Standard directory structure, src, test etc
Managed dependencies, both what they are, and what
versions
Easy re-distributivity -- harder to have local state
Test-able using package manager's pkg> test MyPackage

The recommended way to create packages also ensures:

Continuous Integration(/s) Setup
Code coverage
Documentation setup
License set

Testing Julia code is important.
JIT compiler: even compilation errors don't arive til run-time.

Dynamic language: type system says nothing about correctness.

Testing julia code is important.

So its good to have CI etc all setup

Multiple Dispatch + Duck-typing
Assume it walks like a duck and talks like a duck, and if it doesn't fix
that.

Another closely related factor is Open Classes.
But I'm not going to talk about that today, its uninteresting.
You need to allow new methods to be added to existing classes, in the
first place.

Consider on might have a type from the Ducks library.

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

5 of 18 25/01/2020, 08:03

In [3]: struct Duck end

walk(self) = println("🚶 Waddle")

talk(self) = println("🦆 Quack")

raise_young(self, child) = println("🐤 ➡ 💧 Lead to water")

and I have some code I want to run, that I wrote:

In [4]: function simulate_farm(adult_animals, baby_animals)

for animal in adult_animals

walk(animal)

talk(animal)

end

parent = first(adult_animals)

for child in baby_animals

raise_young(parent, child)

end

end

In [5]: simulate_farm([Duck(), Duck(), Duck()], [Duck(), Duck()])

Ok now I want to extend it with my own type. A Swan

In [7]: struct Swan end

Out[3]: raise_young (generic function with 1 method)

Out[4]: simulate_farm (generic function with 1 method)

🚶 Waddle

🦆 Quack

🚶 Waddle

🦆 Quack

🚶 Waddle

🦆 Quack

🐤 ➡ 💧 Lead to water

🐤 ➡ 💧 Lead to water

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

6 of 18 25/01/2020, 08:03

In [8]: # Lets test with just 1 first:

simulate_farm([Swan()], [])

The Waddle was right, but Swans don't Quack.

We did some duck-typing -- Swans walk like ducks, but they don't talk
like ducks.

We can solve that with single dispatch.

In [12]: talk(self::Swan) = println("🦢 Hiss")

In [13]: # Lets test with just 1 first:

simulate_farm([Swan()], [])

In [14]: # Now the whole farm

simulate_farm([Swan(), Swan(), Swan()], [Swan(), Swan()])

🚶 Waddle

🦆 Quack

Out[12]: talk (generic function with 2 methods)

🚶 Waddle

🦢 Hiss

🚶 Waddle

🦢 Hiss

🚶 Waddle

🦢 Hiss

🚶 Waddle

🦢 Hiss

🐤 ➡ 💧 Lead to water

🐤 ➡ 💧 Lead to water

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

7 of 18 25/01/2020, 08:03

That's not right. Swans do not lead their young to water.

They carry them

In [16]: # Same thing again:

raise_young(self::Swan, child::Swan) = println("🐤 ↗ 🦢 Carry on

back")

In [17]: # Now the whole farm

simulate_farm([Swan(), Swan(), Swan()], [Swan(), Swan()])

Now I want a Farm with mixed poultry.

2 Ducks, a Swan, and 2 baby swans

Out[16]: raise_young (generic function with 2 methods)

🚶 Waddle

🦢 Hiss

🚶 Waddle

🦢 Hiss

🚶 Waddle

🦢 Hiss

🐤 ↗ 🦢 Carry on back

🐤 ↗ 🦢 Carry on back

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

8 of 18 25/01/2020, 08:03

In [20]: simulate_farm([Duck(), Duck(), Swan()], [Swan(), Swan()])

Thats not right again.
🐤 ➡ 💧 Lead to water

What happened?

We had a Duck, raising a baby Swan, and it lead it to water.

Ducks given baby Swans to raise, will just abandon them.

But how will we code this?

Option 1: Rewrite the Duck
function raise_young(self::Duck, child::Any)

if child isa Swan
println("🐤😢 Abandon")

else
println("🐤 ➡ 💧 Lead to water")

end
end

🚶 Waddle

🦆 Quack

🚶 Waddle

🦆 Quack

🚶 Waddle

🦢 Hiss

🐤 ➡ 💧 Lead to water

🐤 ➡ 💧 Lead to water

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

9 of 18 25/01/2020, 08:03

Rewriting the Duck has problems
Have to edit someone elses library, to add support for my
type.
This could mean adding a lot of code for them to maintain
Does not scale, what if other people wanted to add Chickens,
Geese etc.

Varient: Monkey-patch

If the language supports monkey patching, could do it that
way
but it means copying their code into my library, will run in to
issues like not being able to update.
Scaled to other people adding new types even worse, since
no longer a central canonical source to copy

Varient: could fork their code

That is giving up on code reuse.

Option 2: Inherit from the Duck
(NB: this example is not valid julia code)
struct DuckWithSwanSupport <: Duck end

function raise_young(self::DuckWithSwanSupport, child::Any)
if child isa Swan

println("🐤😢 Abandon")
else

raise_young(upcast(Duck, self), child)
end

end

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

10 of 18 25/01/2020, 08:03

Inheriting from the Duck has problems:
Have to replace every Duck in my code-base with
DuckWithSwanSupport

If I am using other libraries that might return a Duck I have to
deal with that also

Still does not scale.

If someone else implements DuckWithChickenSupport, and I want
to use both there code and mine, what do?

Inherit from both? DuckWithChickenAndSwanSupport
This is the classic multiple inheritance Diamond problem.
It's hard. Even in languages supporting multiple inheritance,
they may not support it in a useful way for this without me
writing special cases for many things.

Option 3: Multiple Dispatch
This is clean and easy:

In [26]: raise_young(parent::Duck, child::Swan) = println("🐤😢 Abandon")

In [27]: simulate_farm([Duck(), Duck(), Swan()], [Swan(), Swan()])

Out[26]: raise_young (generic function with 3 methods)

🚶 Waddle

🦆 Quack

🚶 Waddle

🦆 Quack

🚶 Waddle

🦢 Hiss

🐤😢 Abandon

🐤😢 Abandon

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

11 of 18 25/01/2020, 08:03

We will now take a short break

But does this happen in the wild?
Turns out it does.

The need to extend operations to act on new combinations of types
shows up all the time in scientific computing.
I suspect it shows up more generally, but we've learned to ignore it.

If you look at a list of BLAS, methods you will see just this, encoded in
the function name E.g.

SGEMM - matrix matrix multiply
SSYMM - symmetric-matrix matrix multiply
...
ZHBMV - complex hermitian-banded-matrix vector multiply

And turns out people keep wanting to make more and more matrix
types.

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

12 of 18 25/01/2020, 08:03

In [75]: b = BlockArray(0.5.<sprand(3*4,3*4,0.9), [4,4,4],[4,4,4])

In [65]: # creates a banded matrix of 8, with l sub-diagonals and u super-

diagonals

BandedMatrix(Ones{Int}(10,10), (l,u))

Out[75]: 3×3-blocked 12×12 BlockArray{Bool,2,Array{SparseMatrixCSC{Boo

l,Int64},2},Tuple{BlockedUnitRange{Array{Int64,1}},BlockedUni

tRange{Array{Int64,1}}}}:

 1 0 0 0 │ 0 1 0 0 │ 1 0 0 0

 0 1 1 1 │ 1 1 1 1 │ 1 1 0 0

 0 0 1 0 │ 1 0 0 0 │ 1 0 0 1

 0 0 0 0 │ 0 0 1 0 │ 1 0 0 0

 ────────────┼──────────────┼────────────

 1 0 0 0 │ 1 1 0 0 │ 1 1 0 1

 0 1 1 1 │ 1 1 1 0 │ 0 1 0 0

 0 1 0 1 │ 1 0 0 0 │ 0 1 1 0

 1 0 0 0 │ 0 0 1 1 │ 1 1 0 0

 ────────────┼──────────────┼────────────

 0 0 1 0 │ 1 1 0 0 │ 0 0 1 0

 1 0 0 0 │ 0 0 0 0 │ 0 1 1 0

 0 1 0 0 │ 1 0 0 0 │ 1 0 1 1

 1 1 0 1 │ 0 1 1 1 │ 0 1 1 1

Out[65]: 10×10 BandedMatrix{Int64,Array{Int64,2},Base.OneTo{Int64}}:

 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 1 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 1 1 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 ⋅ 1 1 1 1 ⋅ ⋅ ⋅ ⋅ ⋅

 ⋅ ⋅ 1 1 1 1 ⋅ ⋅ ⋅ ⋅

 ⋅ ⋅ ⋅ 1 1 1 1 ⋅ ⋅ ⋅

 ⋅ ⋅ ⋅ ⋅ 1 1 1 1 ⋅ ⋅

 ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 1 1 ⋅

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 1 1

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 1

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

13 of 18 25/01/2020, 08:03

In [59]: # creates a block-banded matrix with ones in the non-zero entries

x = BlockBandedMatrix(Ones{Int}(sum(rows),sum(cols)), rows,cols,

(l,u))

In [60]: # creates a banded-block-banded matrix with 8 in the non-zero ent

ries

y = BandedBlockBandedMatrix(Ones{Int}(sum(rows),sum(cols)), rows,

cols, (l,u), (λ,µ))

Out[59]: 4×4-blocked 10×10 BlockSkylineMatrix{Int64,Array{Int64,1},Blo

ckBandedMatrices.BlockSkylineSizes{Tuple{BlockedUnitRange{Arr

ay{Int64,1}},BlockedUnitRange{Array{Int64,1}}},Fill{Int64,1,T

uple{Base.OneTo{Int64}}},Fill{Int64,1,Tuple{Base.OneTo{Int6

4}}},BandedMatrix{Int64,Array{Int64,2},Base.OneTo{Int64}},Arr

ay{Int64,1}}}:

 1 │ 1 1 │ ⋅ ⋅ ⋅ │ ⋅ ⋅ ⋅ ⋅

 ───┼────────┼───────────┼────────────

 1 │ 1 1 │ 1 1 1 │ ⋅ ⋅ ⋅ ⋅

 1 │ 1 1 │ 1 1 1 │ ⋅ ⋅ ⋅ ⋅

 ───┼────────┼───────────┼────────────

 1 │ 1 1 │ 1 1 1 │ 1 1 1 1

 1 │ 1 1 │ 1 1 1 │ 1 1 1 1

 1 │ 1 1 │ 1 1 1 │ 1 1 1 1

 ───┼────────┼───────────┼────────────

 ⋅ │ 1 1 │ 1 1 1 │ 1 1 1 1

 ⋅ │ 1 1 │ 1 1 1 │ 1 1 1 1

 ⋅ │ 1 1 │ 1 1 1 │ 1 1 1 1

 ⋅ │ 1 1 │ 1 1 1 │ 1 1 1 1

Out[60]: 4×4-blocked 10×10 BandedBlockBandedMatrix{Int64,PseudoBlockAr

ray{Int64,2,Array{Int64,2},Tuple{BlockedUnitRange{Array{Int6

4,1}},BlockedUnitRange{Array{Int64,1}}}},BlockedUnitRange{Arr

ay{Int64,1}}}:

 1 │ 1 1 │ ⋅ ⋅ ⋅ │ ⋅ ⋅ ⋅ ⋅

 ───┼────────┼───────────┼────────────

 1 │ 1 1 │ 1 1 1 │ ⋅ ⋅ ⋅ ⋅

 1 │ 1 1 │ 1 1 1 │ ⋅ ⋅ ⋅ ⋅

 ───┼────────┼───────────┼────────────

 1 │ 1 1 │ 1 1 1 │ 1 1 1 ⋅

 1 │ 1 1 │ 1 1 1 │ 1 1 1 1

 ⋅ │ ⋅ 1 │ ⋅ 1 1 │ ⋅ 1 1 1

 ───┼────────┼───────────┼────────────

 ⋅ │ 1 1 │ 1 1 1 │ 1 1 1 ⋅

 ⋅ │ 1 1 │ 1 1 1 │ 1 1 1 1

 ⋅ │ ⋅ 1 │ ⋅ 1 1 │ ⋅ 1 1 1

 ⋅ │ ⋅ ⋅ │ ⋅ ⋅ 1 │ ⋅ ⋅ 1 1

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

14 of 18 25/01/2020, 08:03

And that is before other things you might like to to to a Matrix, which
you'd like to encode in its type:

Running on a GPU
Tracking Operations for AutoDiff
Naming dimensions, for easy lookup
Distributing over a cluster

These are all important and show up in crucial applications.
When you start applying things across disciplines, they show up even
more.
Like advancements in Neural Differential Equations, which needs:

all the types machine learning research has invented,
and all the types differential equation solving research has
invented,

and wants to use them together.

So its not a reasonable thing for a numerical language to say that
they've enumerated all the matrix types you might ever need.

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

15 of 18 25/01/2020, 08:03

Inserting a human into the JIT

Basic functionality of an Tracing JIT:
Detect important cases via tracing
Compile specialized methods for them

This is called specialization.

Basic functionalitionality of Julia's JIT:
Specialize all methods on all types that they are called on as
they are called

This is pretty good: its a reasonable assumption that the types are
going to an important case.

What does multiple dispatch add ontop of Julia's
JIT?
It lets a human tell it how that specialization should be done.
Which can add a lot of information.

Consider Matrix multiplication.
We have

*(::Dense, ::Dense):
multiply rows by columns and sum.
Takes time

*(::Dense, ::Diagonal) or *(::Diagonal,
::Dense):

column-wise/row-wise scaling.
 time.

O()n3

O()n2

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

16 of 18 25/01/2020, 08:03

*(::OneHot, ::Dense) or *(::Dense, ::OneHot):
column-wise/row-wise slicing.

 time.

*(::Identity, ::Dense) or *(::Dense,
::Identity):

no change.
 time.

Anyone can have basic fast array processing by
throwing the problem to BLAS, or a GPU.
But not everyone has Array types that are parametric on their scalar
types; and the ability to be equally fast in both.

Without this, your array code, and your scalar code can not be
disentangled.

BLAS for example does not have this.
It has a unique code for each combination of scalar and matrix type.

With this seperation, one can add new scalar types:

Dual numbers
Measument Error tracking numbers
Symbolic Algebra numbers

Without ever having to touch array code, except as a late-stage
optimization.

Otherwise, one needs to implement array support into one's scalars, to
have reasonable performance at all.

O(n)

O(1)

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

17 of 18 25/01/2020, 08:03

People need to invent new languages. Its a good time to be inventing
new languages. It's good for the world.

I’ld just really like those new languages to please have:

multiple dispatch
open classes, so you can add methods to things.
array types that are parametric on their scalar types, at the
type level
A package management solution built-in, that everyone uses.

whycompositionaljulia slides http://oxinabox.ucc.asn.au/files/JuliaCompositionalWhy/whyco...

18 of 18 25/01/2020, 08:03

